五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

An Introduction to Modular Arithmetic

2023-09-27 11:59 作者:第一性原理  | 我要投稿

The best way to introduce modular arithmetic is to think of the face of a clock.


The numbers go from 1 to 12, but when you get to "13 o'clock",?it actually becomes 1 o'clock again

So?

13?becomes?1,?

14?becomes?2,?

and so on.

This can keep going, so when you get to "25?o'clock'', you are actually back round to where?1?o'clock is on the clock face (and also where?13?o'clock was too).

What we are saying is?

"13=1+?some multiple of?12", and?

"38=2+?some multiple of?12",?

or, alternatively, "the remainder when you divide?13?by?12?is?1" and "the remainder when you divide?38?by 12 is 2''. The way we write this mathematically is?

13≡1?mod?12,?

38≡2?mod?12

and so on. This is read as?

"13?is congruent to?1?mod (or modulo)?12" and?

"38?is congruent to?2?mod?12".

Congruence

key words:

mod?u?lar?/?m?dj?l??$??mɑ?d??l?r/?adjective?

con?gru?ent?/?k??ɡru?nt?$??kɑ??-/?adjective

congruence

re?main?der?/r??me?nd??$?-?r/?●○○?noun


An Introduction to Modular Arithmetic的評論 (共 條)

分享到微博請遵守國家法律
永德县| 仙游县| 丰城市| 秦皇岛市| 柞水县| 化德县| 马鞍山市| 漳州市| 丰顺县| 方山县| 突泉县| 长宁区| 栖霞市| 咸丰县| 松潘县| 兴宁市| 从化市| 上思县| 泸溪县| 红安县| 大冶市| 西峡县| 郎溪县| 苏尼特右旗| 长岭县| 平阴县| 松溪县| 蓝田县| 黄梅县| 禹城市| 同江市| 观塘区| 丰原市| 贺州市| 明光市| 张家口市| 吉安县| 乌什县| 寿光市| 湘乡市| 盐山县|