五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

[Calculus] Napkin Ring Problem

2021-08-14 21:25 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

The napkin ring problem dates back to Edo Japan. Seki Kowa (1642 - 1708), the leading Japanese mathematician at the time was the first person to have solved this problem using a form of integral calculus called ''Enri''. Seki Kowa called the shape an “arc ring”.

The animation below shows a central cross-section of a sphere of radius?r%20 through which a centrally placed cylinder of radius a has been drilled out and the material removed. The remaining shape is called a napkin ring. Determine the volume of the napkin ring.


【Solution】

Consider the diagram of the cross-section of the napkin ring below. Let the radius of the sphere be %20r. Let radius of the cylindrical hole be a, and half the height of the cylindrical hole be h.

To compute the volume of the napkin ring, observe that its volume is equal to:

V%20%3D%20%7BV%7D_%7Bsphere%7D%20-%20%7BV%7D_%7Bcylinder%7D%20-%202%20%7BV%7D_%7Bspherical%20%5C%3B%20cap%7D%20


The volume of the sphere and the cylinder are well known:


%7BV%7D_%7Bsphere%7D%20%3D%20%5Cfrac%7B4%5Cpi%7D%7B3%7D%20%7Br%7D%5E%7B3%7D

%7BV%7D_%7Bcylinder%7D%20%20%3D%202%5Cpi%20h%20%7Ba%7D%5E%7B2%7D

Note that

a%5E2%20%3D%20r%5E2-h%5E2%20

Use integration to compute the volume of a spherical cap.


%7BV%7D_%7Bspherical%20%5C%3B%20cap%7D%20%3D%20%5Cint_%7Bh%7D%5E%7Br%7D%20%5Cpi%20%5Cleft(%7Br%7D%5E%7B2%7D%20-%20%7By%7D%5E%7B2%7D%20%5Cright)%20dy

%7BV%7D_%7Bspherical%20%5C%3B%20cap%7D%20%3D%20%5Cpi%20%5Cleft(%5Cfrac%7B2%7Br%7D%5E%7B3%7D%7D%7B3%7D%20-%20%7Br%7D%5E%7B2%7D%20h%20%2B%20%5Cfrac%7B%7Bh%7D%5E%7B3%7D%7D%7B3%7D%20%5Cright)%20


Hence, the volume of the napkin ring is:

%20V%20%3D%20%5Cfrac%7B4%5Cpi%7D%7B3%7D%20%7Br%7D%5E%7B3%7D%20-%202%5Cpi%20h%20%7Ba%7D%5E%7B2%7D%20-%202%20%5Cpi%20%5Cleft(%5Cfrac%7B2%7Br%7D%5E%7B3%7D%7D%7B3%7D%20-%20%7Br%7D%5E%7B2%7D%20h%20%2B%20%5Cfrac%7B%7Bh%7D%5E%7B3%7D%7D%7B3%7D%20%5Cright)

%20V%20%3D%20%5Cfrac%7B4%5Cpi%7D%7B3%7D%20%7Br%7D%5E%7B3%7D%20-%202%5Cpi%20h%20%7Ba%7D%5E%7B2%7D%20-%20%20%5Cfrac%7B4%5Cpi%7D%7B3%7D%7Br%7D%5E%7B3%7D%20%2B%202%5Cpi%20%7Br%7D%5E%7B2%7D%20h%20-%20%5Cfrac%7B2%5Cpi%7Bh%7D%5E%7B3%7D%7D%7B3%7D%20

%20V%20%3D%20-%202%5Cpi%20h%20%7Ba%7D%5E%7B2%7D%20%2B%202%5Cpi%20%7Br%7D%5E%7B2%7D%20h%20-%20%5Cfrac%7B2%5Cpi%7Bh%7D%5E%7B3%7D%7D%7B3%7D%20


Since a%5E2%20%3D%20r%5E2-h%5E2%20, we get


%20V%20%3D%20-%202%5Cpi%20h%20%5Cleft(%7Br%7D%5E%7B2%7D%20-%20%7Bh%7D%5E%7B2%7D%5Cright)%20%2B%202%5Cpi%20%7Br%7D%5E%7B2%7D%20h%20-%20%5Cfrac%7B2%5Cpi%7Bh%7D%5E%7B3%7D%7D%7B3%7D%20

%20V%20%3D%202%5Cpi%20%7Bh%7D%5E%7B3%7D%20%20-%20%5Cfrac%7B2%5Cpi%7Bh%7D%5E%7B3%7D%7D%7B3%7D%20

V%20%3D%20%5Cfrac%7B4%5Cpi%7D%7B3%7D%20%7Bh%7D%5E%7B3%7D


The volume of the napkin ring expressed in terms of the height of the cylindrical hole, where H%3D2h, is:

V%20%3D%20%5Cfrac%7B%5Cpi%7D%7B6%7D%20%7BH%7D%5E%7B3%7D

Note that this volume is independent of the radius of the sphere, who would have guessed! This looks unbelievable at first because it means that if you core out any sphere of any size so that the remaining rings have the same height, those rings will also have the same volume!



[Calculus] Napkin Ring Problem的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
和田县| 彰武县| 社旗县| 泗水县| 南江县| 海阳市| 镇巴县| 泗洪县| 吴江市| 辽阳市| 合阳县| 和政县| 淳化县| 大渡口区| 湄潭县| 雷山县| 仁怀市| 琼结县| 饶阳县| 探索| 通渭县| 深水埗区| 景洪市| 潮州市| 灌云县| 连山| 涪陵区| 历史| 九龙坡区| 高阳县| 永川市| 基隆市| 北流市| 余江县| 库尔勒市| 石首市| 海安县| 都昌县| 萨嘎县| 慈溪市| 宜宾市|