五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

Lab Exercise 3

2022-11-08 11:54 作者:溫柔的煙火  | 我要投稿

一. 簡答題(共1題,100分)

1.?(簡答題, 100分)

Students are required to submit your solutions?before 0:00am on October 31st. You should only upload two files (do not zip), your?notebook ".ipynb" file?and?PDF file generated after notebook execution.?


1. Convert an image to grayscale


Select an interesting RGB image, and convert the image to grayscale according to the following formula?

Y = 0.2126*R + 0.7152*G + 0.0722*B, and plot the result.


2. Alpha Blending


Choose multiple photos as your wish, set one (or several) of them to the background, and the others to the foreground, and use the alpha channel to design the composition formula. For example, output = img1 * alpha1 + img2 * alpha2+.. .+imgN*alphaN, alpha1+alpha2+...+alphaN=1


1) Use your composition formula to generate a new image and display it


2) Explain what effect you expect to achieve by using your?composition?formula? , what are the characteristics? , what problem did you encounter? How did you solve it.



3. 4-connectivity and?m-connectivity labeling?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

試?yán)?/figcaption>


Given a binary image as input, the task is to label all white pixels (255) as connected components according to the 4-connectivity?and m-connectivity?rules. Different areas should be colored differently.


1) Students are required to implement the 4-connectivity?and m-connectivity?labeling algorithm (It is not allowed to directly or indirectly call third-party functions to complete?4-connectivity?and m-connectivity?labeling). The algorithm should support at least 100 labels. It takes any binary image as input and outputs?the 4-connectivity?and m-connectivity?labelled?images. The output should be similar to the images shown above.


2) Follows the requirements below, verify your algorithm and display the results:


a. Take the following image as input, generate the 4-connectivity?and m-connectivity?labelled images, and plot them into one row and three columns as the example shown above.

提供的照片


b. Use?test_image=generate_image(4,16)?to generate a test image, apply your algorithm on it to produce?the 4-connectivity and m-connectivity labelled images, and plot them into one row and three columns as the example shown above.


c. Use?test_image=generate_image(10,512)?to generate a test image, do the same as the step b.


import?time

import?numpy?as?np

from?skimage?import?filters


def?generate_image(n,l):

????print("n=",n,"?l=",l)

????print(time.gmtime())

????print(time.time())

????timestamp?=?int(time.time())

????print(timestamp)

????np.random.seed(timestamp)

????im?=?np.zeros((l,?l))

????points?=?l?*?np.random.random((2,?n?**?2))

????im[(points[0]).astype(np.int32),?(points[1]).astype(np.int32)]?=?1

????im?=?filters.gaussian(im,?sigma=?l?/?(5.?*?n))

????im?=?im?>?0.7?*?im.mean()

????return?im


3)As shown in the figure below, there is a hole in the region. Please elaborate how to detect a hole in such region? (Students who are capable can try to implement your solution.)

提供
提供




作答(別不完全對,進(jìn)展示我的)


1. Convert an image to grayscale

Select an interesting RGB image, and convert the image to grayscale according to the following formula

Y = 0.2126R + 0.7152G + 0.0722*B, and plot the result.


import CV2 as cv

import numpy as np

import matplotlib.pyplot as plt

from PIL import Image

import matplotlib.image as image

import os


#展示圖片函數(shù)

def show(img):

? ? if img.ndim==2:

? ? ? ? plt.imshow(img,cmap='gray')

? ? else:

? ? ? ? plt.imshow(cv.cvtColor(img,cv.COLOR_BGR2RGB))

test=cv.imread("Image/date_suqing.png")

show(test)

結(jié)果

#使用公式轉(zhuǎn)換圖片? 首先分離通道

b,g,r = cv.split(test)

img=b*0.0722+g*0.7152+r*0.2126

show(img)

print(test[0])

print(b)

結(jié)果


2. Alpha Blending

Choose multiple photos as your wish, set one (or several) of them to the background, and the others to the foreground, and use the alpha channel to design the composition formula. For example, output = img1 * alpha1 + img2 * alpha2+.. .+imgN*alphaN, alpha1+alpha2+...+alphaN=1

1) Use your composition formula to generate a new image and display it

2) Explain what effect you expect to achieve by using your composition formula? , what are the characteristics? , what problem did you encounter? How did you solve it.

#大小規(guī)定

def resize_img(img,width,high):

? ? re=cv.resize(img,(int(width),int(high)))

? ? return re

#選擇3張圖片

img1=cv.imread("Image/date_suqing.png")

img2=cv.imread("Image/img2.png")

img3=cv.imread("Image/img3.png")

x,y=img1.shape[0:2]

img2=resize_img(img2,y,x)

img3=resize_img(img3,y,x)

images = [img1,img2,img3]

imgs=np.hstack([img1,img2,img3])

show(imgs)

結(jié)果

foreground = img2.astype(float)

foreground2 = img3.astype(float)

background0 = img1.astype(float)

alpha1 = img2.astype(float)/(255*2)

alpha2 = img3.astype(float)/(255*2)


foreground = cv.multiply(alpha1, foreground)

foreground2 = cv.multiply(alpha2, foreground2)

background1 = cv.multiply(1.0 - alpha1, background0)

background2 = cv.multiply(1.0 - alpha2, background0)

outImage = cv.add(foreground, background1)

# cv.imshow("outImg", outImage/255)


# outImage1 = cv.add(foreground2, background2)

# cv.imshow("outImg1", outImage1/255)



outImage2 = cv.add(foreground2,outImage)

cv.imwrite("outimage.jpg",outImage2)?

show(cv.imread('outimage.jpg'))

結(jié)果

explain :

期望就是背景放在最后一層,前景在背景基礎(chǔ)上能繼承,都可以得到較合理的展示,使用相乘的結(jié)果,前景取了兩張圖片,設(shè)置兩個alpha,來看圖片,特點(diǎn)就是,背景圖比前景更明顯,兩張前景圖顯得隱隱約約,遇到的問題是這樣寫到底算對不對呢

3. 4-connectivity and m-connectivity labeling

# 4-connectivity

image=cv.imread('Image/464c345f241b858ea278139190664b9.jpg')

show(image)

結(jié)果

# 4-connectivity labeling

def four_cc_label(img):

#? ? ?print(len(img.shape))

? ? if(len(img.shape)==3):

? ??

? ? ? ? height, width, channel = img.shape

? ??

? ? else:#查看通道數(shù)

? ? ? ? ? ? ? ? # im 為單通道圖像? image為生成的三通道圖像

? ? ? ? ? ? ? ? img = img[:, :, np.newaxis]

? ? ? ? ? ? ? ? img = img.repeat([3], axis=2)

? ? ? ? ? ? ? ? height, width, channel = img.shape

? ? label = np.zeros((height, width), dtype=np.int32)

? ? LUT = np.zeros(height * width,dtype=np.uint8)

# 色彩列表? 支持100個?? ,不如for循環(huán)他

? ? COLORS = np.array([[0, 0, 255], [0, 255, 0], [255, 0, 0],

? ? ? ? ? ? ? ? ? ? ? ?[255, 255, 0], [255, 0, 255], [0, 255, 255],

? ? ? ? ? ? ? ? ? ? ? ?[125, 0, 255], [0, 255, 125], [255, 0, 125],?

? ? ? ? ? ? ? ? ? ? ? ?[255, 255, 125], [255, 125, 255], [0, 125, 255]])

? ? for ila in range(256):

? ? ? ? s=np.array([[255,0,ila],[125,0,ila]])

? ? ? ? COLORS=np.append(COLORS,s,axis=0)

? ? ? ? ? ? ? ? ? ? ??

? ? COLORS.astype(np.uint8)

? ? #應(yīng)該這樣支持260左右

? ? out = np.zeros((height, width, channel), dtype=np.uint8)

? ? label[img[:,:, 0] > 0] = 1


? ? n = 1

? ? for y in range(height):

? ? ? ? for x in range(width):

? ? ? ? ? ? if label[y, x] == 0:

? ? ? ? ? ? ? ? continue

? ? ? ? ? ? c3 = label[max(y - 1, 0), x]

? ? ? ? ? ? c5 = label[y, max(x - 1, 0)]

? ? ? ? ? ? if c3 < 2 and c5 < 2:

? ? ? ? ? ? ? ? n += 1

? ? ? ? ? ? ? ? label[y, x] = n

? ? ? ? ? ? else:

? ? ? ? ? ? ? ? _vs = [c3, c5]

? ? ? ? ? ? ? ? vs = [a for a in _vs if a > 1]

? ? ? ? ? ? ? ? v = min(vs)

? ? ? ? ? ? ? ? label[y, x] = v

? ? ? ? ? ? ? ? minv = v

? ? ? ? ? ? ? ? for _v in vs:

? ? ? ? ? ? ? ? ? ? if LUT[_v] != 0:

? ? ? ? ? ? ? ? ? ? ? ? minv = min(minv, LUT[_v])

? ? ? ? ? ? ? ? for _v in vs:

? ? ? ? ? ? ? ? ? ? LUT[_v] = minv


? ? count = 1


? ? for l in range(2, n + 1):

? ? ? ? flag = True

? ? ? ? for i in range(n + 1):

? ? ? ? ? ? if LUT[i] == l:

? ? ? ? ? ? ? ? if flag:

? ? ? ? ? ? ? ? ? ? count += 1

? ? ? ? ? ? ? ? ? ? flag = False

? ? ? ? ? ? ? ? LUT[i] = count

#? ? ?print(len(LUT[2:]))

? ? for index, lut in enumerate(LUT[2:]):

#? ? ? ? ?print(lut)

? ? ? ? out[label == (index + 2)] = COLORS[lut - 2]

? ? return out



#m-connectivity labeling

#find father and update

import CV2

import numpy as np



def four_cc_label2(img):

? ? if(len(img.shape)==3):

? ??

? ? ? ? height, width, channel = img.shape

? ??

? ? else:#查看通道數(shù)

? ? ? ? ? ? ? ? # im 為單通道圖像? image為生成的三通道圖像

? ? ? ? ? ? ? ? img = img[:, :, np.newaxis]

? ? ? ? ? ? ? ? img = img.repeat([3], axis=2)

? ? ? ? ? ? ? ? height, width, channel = img.shape

? ? label = np.zeros((height, width), dtype=np.int32)

? ? LUT = np.zeros(height * width,dtype=np.uint8)

? ? label = np.zeros((height, width), dtype=np.int32)

? ? LUT = np.zeros(height * width,dtype=np.uint8)


? ? COLORS = np.array([[0, 0, 255], [0, 255, 0], [255, 0, 0],

? ? ? ? ? ? ? ? ? ? ? ?[255, 255, 0], [255, 0, 255], [0, 255, 255]],dtype=np.uint8)

? ? out = np.zeros((height, width, channel), dtype=np.uint8)

? ? label[img[:,:, 0] > 0] = 1


? ? n = 1

? ? for y in range(height):

? ? ? ? for x in range(width):

? ? ? ? ? ? if label[y, x] == 0:

? ? ? ? ? ? ? ? continue

? ? ? ? ? ? c2 = label[max(y - 1, 0), min(x + 1, width - 1)]

? ? ? ? ? ? c3 = label[max(y - 1, 0), x]

? ? ? ? ? ? c4 = label[max(y - 1, 0), max(x - 1, 0)]

? ? ? ? ? ? c5 = label[y, max(x - 1, 0)]

? ? ? ? ? ? if c3 < 2 and c5 < 2 and c2 < 2 and c4 < 2:

? ? ? ? ? ? ? ? n += 1

? ? ? ? ? ? ? ? label[y, x] = n

? ? ? ? ? ? else:

? ? ? ? ? ? ? ? _vs = [c3, c5, c2, c4]

? ? ? ? ? ? ? ? vs = [a for a in _vs if a > 1]

? ? ? ? ? ? ? ? v = min(vs)

? ? ? ? ? ? ? ? label[y, x] = v


? ? ? ? ? ? ? ? minv = v

? ? ? ? ? ? ? ? for _v in vs:

? ? ? ? ? ? ? ? ? ? if LUT[_v] != 0:

? ? ? ? ? ? ? ? ? ? ? ? minv = min(minv, LUT[_v])

? ? ? ? ? ? ? ? for _v in vs:

? ? ? ? ? ? ? ? ? ? LUT[_v] = minv


? ? count = 1

? ? for l in range(2, n + 1):

? ? ? ? flag = True

? ? ? ? for i in range(n + 1):

? ? ? ? ? ? if LUT[i] == l:

? ? ? ? ? ? ? ? if flag:

? ? ? ? ? ? ? ? ? ? count += 1

? ? ? ? ? ? ? ? ? ? flag = False

? ? ? ? ? ? ? ? LUT[i] = count



? ? for i, lut in enumerate(LUT[2:]):

? ? ? ? out[label == (i + 2)] = COLORS[lut - 2]

? ? return out


prignal=cv.imread('image/bd33bf3400112b949021bfd582ce11df.png')

out = four_cc_label(prignal)

cv.imwrite("outimage2.jpg",out)?

out2=cv.imread('outimage2.jpg')

out5 = four_cc_label2(prignal)

cv.imwrite("outimage5.jpg",out)?

out5=cv.imread('outimage5.jpg')

# show(np.hstack([prignal,out2]))

plt.figure()#創(chuàng)建畫布

plt.subplot(1,3,1)

plt.title("binary input")

plt.imshow(prignal)

plt.subplot(1,3,2)

plt.title("4-connectivity labeling")

plt.imshow(out2)

plt.subplot(1,3,3)

plt.title("m-connectivity labeling")

plt.imshow(out5)

plt.show()

結(jié)果

import time


import numpy as np



from skimage import filters




def generate_image(n,l):


? ? print("n=",n," l=",l)


? ? print(time.gmtime())


? ? print(time.time())


? ? timestamp = int(time.time())


? ? print(timestamp)


? ? np.random.seed(timestamp)


? ? im = np.zeros((l, l))


? ? points = l * np.random.random((2, n ** 2))


? ? im[(points[0]).astype(np.int32), (points[1]).astype(np.int32)] = 1


? ? im = filters.gaussian(im, sigma= l / (5. * n))


? ? im = im > 0.7 * im.mean()


? ? return im

test=generate_image(4,16)

#將二維圖像變?yōu)槿S但不影響其圖像顯示

out = four_cc_label(test)

cv.imwrite("outimage3.jpg",out)?

out3=cv.imread('outimage3.jpg')


out = four_cc_label2(test)

cv.imwrite("outimage6.jpg",out)?

out6=cv.imread('outimage6.jpg')

plt.figure()#創(chuàng)建畫布

plt.subplot(1,3,1)

plt.title("binary input")

plt.imshow(test)

plt.subplot(1,3,2)

plt.title("4-connectivity labeling")

plt.imshow(out3)

plt.subplot(1,3,3)

plt.title("m-connectivity labeling")

plt.imshow(out6)

plt.show()

結(jié)果

#c.Use test_image=generate_image(10,512) to generate a test image, do the same as the step b.





test=generate_image(10,512)

#將二維圖像變?yōu)槿S但不影響其圖像顯示

out = four_cc_label(test)

cv.imwrite("outimage4.jpg",out)?

out4=cv.imread('outimage4.jpg')

plt.figure()#創(chuàng)建畫布

plt.subplot(1,2,1)

plt.title("binary input")

plt.imshow(test)

plt.subplot(1,2,2)

plt.title("4-connectivity labeling")

plt.imshow(out4)

plt.show()

結(jié)果


#3)As shown in the figure below, there is a hole in the region. Please elaborate how to detect a hole in such region? (Students who are capable can try to implement your solution.)


#使用4領(lǐng)域標(biāo)注法檢測出一段差異的位置,即可標(biāo)注出圖像空白的部分


Lab Exercise 3的評論 (共 條)

分享到微博請遵守國家法律
惠安县| 银川市| 文水县| 黑龙江省| 江门市| 朝阳市| 上饶市| 盐山县| 太康县| 建瓯市| 雷州市| 贵德县| 翼城县| 清新县| 莆田市| 刚察县| 普宁市| 武川县| 平山县| 施秉县| 沂源县| 乌兰察布市| 湟源县| 怀远县| 宁强县| 青冈县| 万盛区| 威远县| 漾濞| 兴仁县| 昌都县| 南漳县| 汽车| 全南县| 安乡县| 玉田县| 兴业县| 故城县| 广丰县| 阳高县| 霍林郭勒市|